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Abstract
Purpose Although functional brain imaging has been used for the early and objective assessment of cognitive dysfunction, there is a
lack of generalized image-based biomarker which can evaluate individual’s cognitive dysfunction in various disorders. To this end,
we developed a deep learning-based cognitive signature of FDG brain PET adaptable for Parkinson’s disease (PD) as well as
Alzheimer’s disease (AD).
Methods A deep learning model for discriminating AD from normal controls (NCs) was built by a training set consisting of 636
FDG PET obtained from Alzheimer’s Disease Neuroimaging Initiative database. The model was directly transferred to images of
mild cognitive impairment (MCI) patients (n = 666) for identifying who would rapidly convert to AD and another independent
cohort consisting of 62 PD patients to differentiate PD patients with dementia. The model accuracy was measured by area under
curve (AUC) of receiver operating characteristic (ROC) analysis. The relationship between all images was visualized by two-
dimensional projection of the deep learning-based features. The model was also designed to predict cognitive score of the subjects
and validated in PD patients. Cognitive dysfunction-related regions were visualized by feature maps of the deep CNN model.
Results AUC of ROC for differentiating AD from NC was 0.94 (95% CI 0.89–0.98). The transfer of the model could differentiate
MCI patients who would convert to AD (AUC= 0.82) and PD with dementia (AUC = 0.81). The two-dimensional projection
mapping visualized the degree of cognitive dysfunction compared with normal brains regardless of different disease cohorts.
Predicted cognitive score, an output of the model, was highly correlated with the mini-mental status exam scores. Individual
cognitive dysfunction-related regions included cingulate and high frontoparietal cortices, while they showed individual variability.
Conclusion The deep learning-based cognitive function evaluation model could be successfully transferred to multiple disease
domains. We suggest that this approach might be extended to an objective cognitive signature that provides quantitative biomarker
for cognitive dysfunction across various neurodegenerative disorders.
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Introduction

Various neurodegenerative disorders are associated with
cognitive dysfunction. Alzheimer’s disease (AD) is a rep-
resentative disorder characterized by abnormalities in cog-
nition and behaviors. As another common neurodegenera-
tive disorder, Parkinson’s disease (PD) is primarily a
movement disorder, while non-motor manifestations in-
cluding cognitive dysfunction have been widely recog-
nized as well [1]. At the early stage of PD, a single domain
of cognition or behavior is affected before the onset of full-
blown dementia and then multiple domains such as visuo-
spatial function and memory performance are affected [2].
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The early detection of cognitive dysfunction is essential for
appropriate therapeutic intervention as cognitive functions
largely contributes to functional outcomes and quality of
life [3, 4]. So far, the objective methods to estimate pa-
tients’ cognitive functional status considering underlying
progression mechanisms of neurodegenerative disorders
have not been established. The quantitative biomarker of
cognitive function at the individual patient level has been
required for the objective assessment of disease status dur-
ing progression and therapeutic intervention for the future
clinical trials.

Functional imaging studies which aim at dopaminergic
neurodegeneration and neuronal activities have been used
for diagnosis and evaluating the functional status of PD [5,
6]. Among the various imaging methods, FDG brain PET
has been used to differentiate parkinsonian disorders as
well as to define metabolic abnormal patterns related to
clinical symptoms and functional properties of PD patients
[7, 8]. In particular, FDG PET was also applied to find
abnormal metabolic topographic patterns in cognitive dys-
function in PD [9–11]. In spite of the identification of cog-
nitive function-related brain metabolic changes in PD, the
quantitative score based on FDG PET has not been widely
used in the clinical setting. It was due to a lack of valida-
tion and generalization for various disease spectrum as
well as the difficulty in standardized image processing.

To this end, we aimed at developing a cognitive function
signature based on FDG PET which can be applied to PD as
well as AD andmild cognitive impairment (MCI) patients. We
employed a deep convolutional neural network (CNN) for
translating FDG PET images into quantitative scores
reflecting cognitive dysfunction. Though deep CNN has ad-
vantages in automatically capturing discriminative features
from the data, the preparation of a large dataset for the model
training becomes a bottleneck of deep learning application in
medicine [12]. The model transfer for relatively small datasets
can be a good alternative for this data issue. The features
extracted from a relatively large dataset can be transferred to
other domains with relatively small data to overcome data size
[13, 14]. We applied this concept to brain imaging data.
Firstly, a deep CNN model to discriminate AD from normal
controls (NC) was trained using a relatively large FDG brain
PET dataset, and then, this model was transferred to identifi-
cation of MCI patients who would rapidly convert to AD. We
further investigated whether the model can be applied to an
independent dataset with different disease domain, a cohort of
PD patients, for identifying cognitive dysfunction. A web-
based application where the uses could easily obtain the cog-
nitive signature produced by our analysis was also developed
(https://fdgbrainpet.appspot.com/). Thus, we expected deep
learning-based cognitive function evaluation could provide
the cognitive signature across multiple disease groups.

Materials and methods

Subjects

For a dataset of PD with FDG PET scans, we used FDG
database of PD patients who were diagnosed as PD based
on the UK PD Brain Bank criteria [15] by experienced
movement disorder specialist (J.Y.L) and had been
followed up at the movement disorders clinic in our insti-
tution. Among the patients, those who had history of
stroke, space occupying lesions on the routine brain
MRI; neurosurgical procedures including deep brain stim-
ulation; features suggesting atypical parkinsonism or final
diagnosis of atypical parkinsonism such as multiple sys-
tem atrophy, progressive supranuclear palsy, and
corticobasal degeneration; secondary parkinsonism related
to hydrocephalus or drug; medical history of psychiatric
disease which required psychiatric treatment, were ex-
cluded. Clinical information of age at PET scan, age at
PD onset, Hoehn and Yahr (HY) stage, presence of PD
dementia, and Korean version of mini-mental status ex-
amination scores was obtained. Diagnosis of dementia
was made during the routine clinical follow-up according
to the published criteria of probable dementia associated
with PD suggested by the Movement Disorders Society
(MDS) Task Force [2], and the diagnosis of dementia with
Lewy bodies was considered as an exclusion criteria for
this study following the 1-year rule. Finally, data from a
total 62 PD patients (mean age ± SD, 71.0 ± 6.5;
female:male, 32:30) were included in this study, and thir-
teen of the PD patients (20.9%) were classified as PD
with dementia. The Institutional Review Board (IRB) of
Seoul National University Boramae Medical Center ap-
proved this study and informed consents were waived.

In this study, as a training dataset for our model, FDG
PET images acquired from subjects recruited in Alzheimer’s
Disease Neuroimaging Initiative (ADNI) were used (http://
adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator
Michael W. Weiner, MD, VA Medical Center and
University of California San Francisco. The primary goal
of ADNI has been to test whether serial MRI, PET, biolog-
ical markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of MCI
and early AD. ADNI has recruited more than 1600 partici-
pants from more than 50 sites across the USA and Canada.
For up-to-date information, see http://www.adni-info.org.
Written informed consent to cognitive testing and
neuroimaging prior to participation was obtained,
approved by the institutional review boards of all
participating institutions. Baseline FDG PET scans of AD,
MCI, and NC were used for this study (n = 1306; 243 AD,
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666MCI, and 393 NC). MCI subjects were divided into two
subgroups : MCI-conver t e rs (MCI-C) and MCI-
nonconverters (MCI-NC). MCI subjects who converted into
AD within 3 years were defined as MCI-C (167 MCI-C and
274 MCI-NC). MCI-NC included MCI subjects whose di-
agnosis was st i l l MCI at 3-year follow-up exam.
Demographic and clinical characteristics of patients are
summarized in Table 1.

FDG PET acquisition and processing

FDG PET scans were downloaded from ADNI database
(http://adni.loni.usc.edu). PET images of ADNI are
available for the database at various levels of
preprocessing [16]. The images of dynamic frames (6
frames from 30 to 60 min after the injection) were
averaged. The images were aligned and resampled to
have same voxel size. The intensity was normalized
by global brain FDG uptake. PET images were
acquired in the 57 sites participating in ADNI;
scanner-specific smoothing was additionally applied
[16]. Images were downloaded at this preprocessing lev-
el. Downloaded scans were then normalized to Montreal
Neurological Institute (MNI) space using statistical para-
metric mapping (SPM8, University College of London,
London, UK).

FDG PET scans of PD patients were acquired in a single
institute. FDG PET scans were obtained for the subjects with-
out stopping anti-parkinsonian medication. Images were ob-
tained by GEMINI PET/CT machine (Philips Healthcare,
Andover, MA, USA) 40 min after intravenous injection of
4.8 MBq/kg of FDG. FDG was injected after fasting for at
least 6 h. Emission scans were acquired for 10 min. Images
were reconstructed three-dimensional row-action maximum-
likelihood algorithm (3D RAMLA) with CT-based attenua-
tion correction. The final image matrix size was 128 × 128 ×
90 and the voxel size was 2 × 2 × 2 mm3. The images of PD
patients were also spatially normalized to MNI space using
SPM8. The matrix size of spatially normalized PET images
was 79 × 95 × 68 and the voxel size was 2 × 2 × 2 mm3.

Study design

Firstly, we built a CNN-based model that differentiates AD
fromNC using FDG brain PET. The model was directly trans-
ferred to differentiating MCI-C from MCI-NC. Furthermore,
as another independent cohort of different disease domain, the
model was tested for differentiating PD patients with dementia
from those without dementia. As hidden layers of the CNN
represented automatically extracted features of PET images,
the features were visualized by two-dimensional projection.

To predict the cognitive score, MMSE, fine tuning of the
model was additionally performed. This trained model was
applied to another disease group, PD patients. We tested
whether the output of the model could be transferred to
predicting cognitive scores of PD patients. CNN-based fea-
tures of PD patients also projected to two-dimensional space
for the visualization.

Deep CNN for differentiating AD from normal

FDG PET images of AD and NC subjects were used for the
training of the CNNmodel. Among 636 PET images (243 AD
393 NC), randomly selected 64 images were used for the
internal validation. The architecture of the model is represent-
ed in Fig. 1. Briefly, four 3d convolutional layers with 5 × 5 ×
5 convolutional filters hierarchically extracted features of PET
images. For each convolution layer, rectified linear unit
(ReLU) activation was used as an activation function. These
four convolutional features produced 128 feature volumes,
which have 10 × 12 × 9 matrix size. A global average pooling
layer summarized the feature maps into a vector for each fea-
ture map. The 128 features were finally connected to an output
which represented the expectation that the input PET volume
was acquired from AD. The network minimized the cross-
entropy loss between the predicted diagnosis and the real di-
agnosis. Training was conducted by the stochastic gradient
descent algorithm with Adam optimizer [17]. Batch size was
4 and iterative training was stopped by monitoring loss func-
tion and accuracy of the internal validation set.

Deep CNN model transfer and evaluation

The accuracy of the model was evaluated by receiver operat-
ing characteristic (ROC) curves. A ROC curve was drawn for
differentiating AD from NC in the validation set. The model
was directly transferred to testing accuracy for differentiating
MCI-C fromMCI-NC. In addition, the trained model was also
transferred to the task differentiating PD patients with demen-
tia from those without dementia. The accuracy was measured
by area under curve (AUC) values of ROC curves.

Visualization of deep CNN-based features
with two-dimensional projection

All PET volumes of ADNI dataset (N = 1306) were inputted
into the trained CNN model. The model produced 128 fea-
tures for each subject based on the CNN model. For visualiz-
ing the relationship of data according to the similarities, we
employed a parametric t-distributed stochastic neighbor em-
bedding (t-SNE) model [18]. One hundred twenty-eight fea-
tures of each subject’s PET images were visualized by the
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parametric t-SNE by estimating the similarity. It is an unsu-
pervised parametric dimensionality reduction technique that
attempts similar samples are modeled by nearby points and
dissimilar samples are modeled by distant points. More spe-
cifically, the pairwise distance of two datapoints is defined by
the probabilities by centering an isotropic Gaussian over a
datapoint i and computing the density of point j. It is calculat-
ed by,

pj ij ¼
exp −

xi−x j
�
�

�
�
2

2σ2

 !

∑
k≠i

exp −
xi−xkk k2
2σ2

 !

where x denotes high-dimensional data, for here, 128-
dimensional features. Because of the asymmetricity, the

pairwise data affinity was recalculated by pij ¼
p j ij þpi jjð Þ

2n ,

where n is number of datapoints. Then, this datapoints move
to latent feature space, where the parametric t-SNE trans-
formed the datapoints, by minimizing a cost function defined
by Kullback-Leibler divergences over all datapoints,

KL P‖Qð Þ ¼ ∑
i≠ j

pijlog
pij
qij
. qij is the pairwise distance in the fea-

ture latent space, which has 2-dimensions in this study.
One hundred twenty-eight features of each subject’s PET

images were used for input of the t-SNE model. Subjects of
AD/NC, including training and internal validation data, were
visualized. MCI subjects also visualized by the t-SNE model
whether MCI-C and MCI-NC were clustered. The PD data
independent from the diagnosis of AD that consist of 62 pa-
tients were projected to two-dimensional axis points using the
t-SNEmodel. Their MMSE scores were also visualized with a
colormap.

Cognitive function prediction model

To predict the cognitive score, the fine tuning of the
CNN model was performed. One hundred twenty-eight

features were extracted from four convolutional layers
of the model. The last layer connected to output was
only modified. The aim of the model was the MMSE
score instead of AD/NC classification. As the minimum
and maximum MMSE of the ADNI data in our study
were respectively 18 and 30, MMSE scores were
rescaled by (MMSEsubject − MMSEmin)/(MMSEmax −
MMSEmin). So, the range of output was rescaled from
0 to 1 for the training. The CNN model was tuned to
minimize mean square errors between predicted and real
cognitive scores. For this tuning, all ADNI data (N =
1306) were used for the training process. Thus, MMSE
scores of AD, NC, and MCI subjects were used. This
fine-tuned CNN model was applied to predict the cog-
nitive function of PD subjects. The predicted cognitive
score was obtained by inputting PET images of PD
subjects. The output was then rescaled to the original
MMSE scale.

Individual cognitive dysfunction-related region
mapping

To demonstrate that brain regions where the CNNmodel eval-
uated for AD or PD with decreased cognitive function, we
employed the class activation map (CAM) visualization meth-
od [19]. This CAM-based visualization method has been
widely used for indirectly explaining how deep CNN models
predict the outputs [20, 21]. The idea of CAM is to generate
the output map instead of a value which represents the prob-
ability of AD. Thus, simply removing the last pooling layer
produces feature maps instead of feature vectors to visualize
the area most indicative of the AD at individual level. More
specifically, 128 feature maps with 10 × 12 × 9 matrix size
were produced when the global average pooling layer was
not applied. A class activation map for each subject was ob-
tained by multiplying weighs of the last layer and 128 fea-
tures. The map represented which areas were important for
determining that the subject was classified into AD. We

Table 1 Demographic and
baseline clinical characteristics of
cohorts

ADNI cohort PD cohort

AD NC MCI PD (PDD)

Number of subjects 243 393 666 62 (13)

Age (year) 75.0 ± 6.8 73.7 ± 5.9 72.6 ± 7.5 71.0 ± 6.5 (72.2 ± 6.3)

Sex (F:M) 100:143 198:195 275:391 32:30 (9:5)

MMSE 23.2 ± 2.1 27.8 ± 1.7 29.0 ± 1.2 24.7 ± 4.5 (18.8 ± 4.1)

Hoehn and Yahr stage N/A N/A N/A 2.0 ± 0.5 (2.5 ± 0.5)

UPDRS part III N/A N/A N/A 28.5 ± 13.7 (41.4 ± 17.5)

AD, Alzheimer’s disease; NC, normal controls;MCI, mild cognitive impairment; PD, Parkinson’s disease; PDD,
Parkinson’s disease with dementia
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produced the class activation maps for PD subjects who
showed dementia symptoms as well as AD subjects of
ADNI dataset.

Results

Accuracy of the cognitive dysfunction evaluation
model

A deep CNN-based model was built by the training dataset
consisting of AD patients and NC (243 AD 393 NC). The
model accuracy for differentiatingAD fromNCwas evaluated
by AUC of the ROC curve, which showed 0.94 (95% CI
0.89–0.98) for independent validation set (Fig. 2a). Themodel
was directly applied to the task of differentiating MCI-C from
MCI-NC. The AUC for this task was 0.82 (95%CI 0.78–0.86)
for 441 baseline MCI subjects (Fig. 2b). The model was also
applied to differentiating PD patients with dementia from
those without dementia. The AUC was 0.81 (95% CI 0.68–
0.94) (Fig. 2c).

Brain metabolic features projection
to two-dimensional axes

The FDGPET image features based on the deep CNNmodel
were extracted for all subjects of our study. To visualize
subjects according to the similarity of brain metabolism
patterns, those were projected to 2D axes by using a para-
metric t-SNE embedding (Fig. 3a). Each point represents
individual PET data. Subjects with similar brain metabolic
features were exhibited by close points. Of note, two axes
represent the two-dimensional output of the parametric t-
SNE. The axes did not represent a linear quantitative value

as the model visualizes the similarity between PET data in
terms of nonlinear features of image patterns. Thus, the re-
sults visualized the similarities between PET data preserv-
ing local relationship, such as clusters according to diagnos-
tic groups, however, did not reflect the distance of all data.
As a result, AD and NC subjects were clustered, respective-
ly (Fig. 3b). The location of MCI-C subjects was similar
with AD and that of MCI-NC subjects was similar with
NC (Fig. 3c). MMSE scores of AD, MCI, and NC subjects
were additionally represented (Fig. 3d). It showed that pa-
tients with cognitive dysfunction tend to be distributed in
the left lower portion of the 2D axes.

The FDG PET images of PD patients were also projected to
2D axes (Fig. 3e). The color scale represents MMSE score.
Note that the points of PD patients were overlaid with AD and
NC subjects. As AD, MCI, and NC subjects, PD patients with
cognitive dysfunction also tend to be distributed in left lower
portion, which suggested that FDGPET images of PD patients
with cognitive dysfunction share similar patterns with those of
AD and MCI-C subjects.

Predicting cognitive score

Fine tuning of the model was performed to predict individual
cognitive score using FDG PET images of all AD, MCI, and
NC subjects (Fig. 4a). The output of the model, predicted
cognitive score, was plotted with MMSE score (Fig. 4b).
The model was applied to FDG PET images of PD patients.
The predicted cognitive scores of PD patients were signifi-
cantly correlated with MMSE scores (r = 0.55, p < 1 × 10−4,
Fig. 4c). Notably, the predicted MMSE scores of some sub-
jects were larger than 30, which was caused by the training
with normalized value.

Fig. 1 Architecture of FDG PET-based cognitive dysfunction evaluation
model. The model was based on a three-dimensional deep convolutional
neural network. Four 3d convolutional layers with 5 × 5 × 5 convolutional
filters followed by nonlinear activation function were hierarchically
extracted image features of input images. It produced 128 feature

volumes, which have 10 × 12 × 9 matrix size. A global average pooling
layer was followed to summarize the feature maps into vectors. These
automatically extracted features were finally connected to an output
which represented likelihood of Alzheimer’s disease (AD)
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Cognitive dysfunction-related region mapping

We visualized the regions related to cognitive dysfunction by
the deep CNN model. Brain metabolic features related to the
cognitive dysfunction were localized on individual FDG PET
images. The cognitive dysfunction-related regions of individ-
uals were partly different to each other. As shown in Fig. 5a,
cognitive dysfunction-related regions were obtained for three
PD patients with dementia. The regions mainly included cin-
gulate and high frontal/parietal cortices. However, cognitive
dysfunction-related regions of the first patient were posterior
cingulate area while those of the second patient were the su-
perior frontal and parietal cortices. Those of the third patient
were the cingulate and superior frontoparietal cortices.
Cognitive dysfunction-related regions were averaged across
AD patients and PD patients with dementia, respectively
(Fig. 5b). The averaged regions represented cingulate and su-
perior frontal/parietal cortices.

Discussion

In this study, we developed an objective cognitive function
signature using FDG PETwhich can be applied to PD as well
as AD. The deep CNN model trained by AD and NC could
discriminate PD patients with dementia. In addition, each in-
dividual’s cognitive status was intuitively visualized accord-
ing to the similarity of FDG PET patterns with other subjects
by mapping into two-dimensional space. We also found each
individual represented similar but different cognitive
dysfunction-related regions.

One of the major contribution of this study was to develop
a cognitive signature that covered multiple neurodegenerative
disorders. Cognitive decline is a common symptom of neuro-
degeneration disorder. Among PD patients, 80% would even-
tually develop cognitive dysfunction in the late stage of dis-
ease progression [22]. The prediction of future cognitive de-
cline inMCI subjects is crucial for managing dementia. So far,
imaging biomarkers for cognitive function evaluation have
been developed for each type of disorders. These studies have
aimed at identifying a common imaging pattern associated
with cognitive decline based on disease group analysis.
Specifically, hypometabolic brain regions related to MCI-C
[23] and those related to PD with dementia [24] were inde-
pendently investigated. Although these analyses have re-
vealed neural correlates of cognitive impairment, they could
hardly be used for individual assessment of cognitive function
in multiple types of diseases. Our model showed a single
model-based stratification of cognitive function in PD as well
as MCI patients. The model learned FDG PET patterns of
cognitive dysfunction in AD subjects compared with NC,
and then, they could identify MCI-C and PD patients with
dementia without any modification. It suggested a feasibility

of the usage of deep CNN-based imaging biomarker for cog-
nitive function evaluation in multiple types of neurodegener-
ative disorders.

This approach could explicitly visualize the status based on
an individual’s brain metabolism. It is important to identify
individual’s status based on brain metabolism compared with
other subjects for therapeutic management and further clinical
decisions. The parametric t-SNE embedding intuitively visu-
alized the cognitive status of each individual compared with
other patients. Moreover, our approach could provide individ-
ual cognitive biomarker by capturing individual cognitive
dysfunction-related regions. This individualized approach
was resulted from the hierarchical feature discovery of the
deep CNN model. As presented in Fig. 5, the cognitive
dysfunction-related regions of individual subjects were quite
different. It suggested that the model could capture unique
FDG PET patterns of each subject to estimate cognitive func-
tion. This individual pattern recognition is one of the different
factor compared with previous methods of image-based cog-
nitive function evaluation. Previous study used a group-wise
regional distribution pattern of FDG uptake and individual
cognitive scores were obtained [10]. On the other hand, our
results showed the individual variability in the location of
cognitive dysfunction-related regions. It suggests that brain
regions affecting cognitive dysfunction could be varied in
PD patients; thus, individualized evaluation might be needed
for subtyping and further clinical trials. The cognitive
dysfunction-related regions were identified by CAM, which
has been widely used for explaining the decision of CNN
models [20, 21]. However, the interpretation of the decision
of CNN model should be cautious when we try to use it in the
clinical setting. Since this approach does not mean decreased
cortical metabolism, but represent the location of patterns, the
model could find patterns of relative FDG distribution in non-
cortical area compared with near gray matter. It is a limitation
of the CNN model to use in the clinical setting if the patterns
located on atypical brain areas cannot be explained by our
knowledge of the FDG PET of cognitive dysfunction. In our
approach, the visualization of cognitive dysfunction-related
regions could indirectly provide whether the deep CNNmodel
captured appropriate brain regions for the decision; thus, we
may refer these patterns in the comprehensive interpretation of
the results. According to our representative figure (Fig. 5a),
the cognitive dysfunction-related regions were varied accord-
ing to cases; they included frontal and parietal cortices as well
as the cingulate cortex. As these regions commonly show
abnormal metabolism on FFG PET of AD, the output of deep
learning model could be in line with the clinical situation and
visual interpretation. However, if the regions include atypical
brain areas and the output of the model is different from visual
interpretations, we should be cautious to refer to the output of
the CNN model. Because of this limitation in the explainable
model using CAM, further visualization and explainable
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methods will be needed as future work. Furthermore, clinical
manifestation and symptomatic features correlated with vari-
ous cognitive dysfunction-related regions can be deeply inves-
tigated, which will enrich the application of deep CNN to
classify subtypes of cognitive dysfunction.

One of the contributions of this study was to show clinical
feasibility of deep CNN-based biomarker by validating the
model in an independent cohort that consists of PD patients.

A critical issue in application of deep learning to medical
imaging is the limited number of data [12, 25]. One of the
strategies to overcome this challenge was to transfer a model
trained on a huge number of other data. Several studies have
used deep learning models trained by natural image database,
ImageNet, to various types of medical images to overcome the
issue of data size [26–29]. However, as the brain PET is three-
dimensional and has unique image textures distinct from

Fig. 3 Visualization of brain metabolic features by two-dimensional
projection mapping. a Deep learning-based features were extracted for
all subjects and they were visualized according to the similarity of brain
metabolism patterns. The individual features were projected to 2D axes
by using parametric t-distributed stochastic neighbor embedding (t-SNE).
b For training data, AD and NC subjects were distinctively clustered. c
PET images of MCI patients were embedded to 2D axes. MCI-C and

MCI-nonconverters (MCI-NC) were distinctively located as AD and
NC subjects. d MMSE scores of subjects of ADNI cohort were
simultaneously plotted. Subjects with lower MMSE score were
relatively located on left lower portion of the 2D axes. e PD patients
were projected to the 2D projection map and overlaid with AD and NC
subjects. PD patients with low MMSE score were located on the left
lower portion

Fig. 2 Receiver operating characteristic curves for differentiating patients
with cognitive dysfunction. The accuracy of the model was assessed by
area under curves (AUC) of receiver operating characteristic curves. a
The AUC for differentiating AD from normal controls (NC) was 0.94
(95% CI 0.89–0.98) for validation set. b The AUC of the model for

differentiating mild cognitive impairment (MCI) patients who would
convert to full-blown dementia (MCI-C) was 0.82 (95% CI 0.78–0.86).
c The model was directly also applied to differentiating Parkinson’s
disease (PD) patients with dementia from those without dementia and
AUC was 0.81 (95% CI 0.68–0.94)
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natural images, it was difficult to transfer model trained by
natural images. Therefore, we trained a 3D CNN model
trained by relatively large data consisting of AD and NC and
then validated in PD patents. Some previous studies showed
transfer of the model trained by AD and NC to MCI patients,

while this domain transfer was based on the knowledge that
metabolic topographic patterns of MCI-C shares AD patients
[30–32]. Considering the model could measure cognitive
function in the independent PD cohort, we suggest this trans-
fer strategy could facilitate the application of deep learning in

Fig. 5 Cognitive dysfunction-related regionmapping. The feature map of
deep CNN could visualize the cognitive dysfunction-related regions for
each individual. This mapping represented what regions the model had
seen to determine that the subject had cognitive dysfunction. a The

cognitive dysfunction-related regions differed among individuals. b
These regions were averaged across AD patients and PD patients with
dementia. They included cingulate and superior frontal/parietal cortices

Fig. 4 Fine tuning of the model for predicting cognitive score. a The last
layer of the model was tuned to predict individual MMSE score using
FDG PET images. b For ADNI cohort, the output of fine-tuned model

was plotted with MMSE score. c This model was applied to the
independent cohort, PD patients. The output of the model was
significantly correlated with MMSE score (r = 0.55, p < 1 × 10−4)
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relatively small cohorts. Furthermore, it enables clinical trials
to prove clinical utility of deep learning-based biomarker.

The neural substrates of cognitive impairment in neurode-
generative disorders are varied in accordance with types of
diseases and still remain poorly understood. For an objective
assessment of cognitive impairment, there is a need to estab-
lish imaging biomarkers which could aid in the identification
of patients at risk of cognitive decline, for early diagnosis and
for therapeutic trials. Our suggested deep CNN-based cogni-
tive signature could accurately and objectively assess cogni-
tive dysfunction in PD as well as MCI patients. The model
also intuitively visualized individual status compared with
population by 2D projection map and provided cognitive
dysfunction-related regions at the individual level. As a
proof-of-concept study, we expect that the deep learning-
based biomarker might be extended to a generalized cognitive
function assessment model for various neurodegenerative dis-
orders. The cognitive signature based on FDG PET can be
estimated by a web-based application (https://fdgbrainpet.
appspot.com/) (Supplementary Fig. 1). It will facilitate
clinical trials of therapeutic candidates as it may play a role
in disease status monitoring and surrogates for therapeutic
targets.
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